Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 113: 109245, 2023 03.
Article in English | MEDLINE | ID: mdl-36473540

ABSTRACT

Early balanced nutrition is vital in achieving optimal skeletal mass and its maintenance. Although a lower omega-6 (n-6): omega-3 (n-3) long-chain polyunsaturated fatty acid (LC-PUFA) ratio is strongly linked with bone health, its maternal effect in the programming of the offspring's skeleton remains to be elucidated. Plugged C57BL/6 mice were fed either n-3 LC-PUFA Enriched Diet (LED) or a control diet (C) throughout their gestation and lactation. Offspring born to both the groups were weaned onto C till 6, 12, and 24 weeks of their age. Offspring's skeleton metabolism and serum fatty acid composition was studied. In humans, seventy-five mother-female newborns pairs from term gestation were tested for their maternal LC-PUFA status relationships to venous cord blood bone biomarkers. Offspring of maternal LED supplemented mice exhibited a superior bone phenotype over C, more prominent in females than males. A lower serum n-6/n-3 LC-PUFA in the LED group offspring was strongly associated with blood biomarkers of bone metabolism. Sexual dimorphism evidenced had a strong correlation between offspring's LC-PUFA levels and bone turnover markers in serum. A higher potential for osteoblastic differentiation in both LED offspring genders and reduced osteoclastogenesis in females was cell-autonomous effect. The human cross-sectional study also showed a positive correlation between maternal n-3 PUFA and cord blood markers of bone formation in female newborns at birth. Maternal dietary n-6/ n-3 fat quality determines offspring's bone growth and development. Our data suggest that the skeleton of female offspring is likely to be more sensitive to this early exposure.


Subject(s)
Bone Density , Fatty Acids, Omega-3 , Humans , Female , Male , Mice , Animals , Adult , Cross-Sectional Studies , Mice, Inbred C57BL , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated , Dietary Fats , Dietary Supplements
2.
Article in English | MEDLINE | ID: mdl-36429569

ABSTRACT

Fatty acid desaturases, the enzymes responsible for the production of unsaturated fatty acids (FA) in fetal tissues, are known to be influenced by maternal-placental supply of nutrients and hormones for their function. We hypothesize that there could be a gender-specific regulation of unsaturated FA metabolism at birth, dependent on the maternal fatty acid levels. In this study, 153 mother-newborn pairs of uncomplicated and 'full-term' pregnancies were selected and the FA composition of plasma glycerophospholipids (GP) was quantified by gas chromatography. The FA composition of mother blood plasma (MB) was compared with the respective cord blood plasma (CB) of male newborns or female newborns. Product to substrate ratios were estimated to calculate delta 5 desaturase (D5D), delta 6 desaturase (D6D) and delta 9 stearoyl-CoA-desaturase (D9D/SCD) indices. Pearson correlations and linear regression analyses were employed to determine the associations between MB and CB pairs. In the results, the male infant's MB-CB association was positively correlated with the SCD index of carbon-16 FA, while no correlation was seen for the SCD index of carbon-18 FA. Unlike for males, the CB-D5D index of female neonates presented a strong positive association with the maternal n-6 long chain-polyunsaturated FA (LC-PUFA), arachidonic acid. In addition, the lipogenic desaturation index of SCD18 in the CB of female new-borns was negatively correlated with their MB n-3 DHA. In conclusion, sex-related differences in new-borns' CB desaturation indices are associated with maternal LC-PUFA status at the time of the birth. This examined relationship appears to predict the origin of sex-specific unsaturated FA metabolism seen in later life.


Subject(s)
Glycerophospholipids , Placenta , Infant , Female , Humans , Male , Infant, Newborn , Pregnancy , Placenta/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids , Plasma/metabolism
3.
Interdiscip Toxicol ; 12(3): 129-135, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32210701

ABSTRACT

We have earlier demonstrated the potential of monocrotophos (MCP), a highly toxic organophosphorus insecticide (OPI), to elicit insulin resistance in rats after chronic exposure. Given the understanding of role of paraoxonase1 (PON1) in OPI toxicity and diabetes pathology, this study was envisaged to understand the effect of duration of exposure to MCP on plasma PON1 activity in rats. Rats were administered MCP per os at 1/20 and 1/10th LD50 as daily doses for 180 days. Interim blood samples were collected at 15, 30, 45, 90 and 180 d for analysis of plasma parameters. Exposure to MCP for 45 resulted in persistent trend of hyperinsulinemia, while significant increase in fasting glucose levels was observed after 180 days. MCP caused suppression of plasma cholinesterase activity though the study period, albeit extent of inhibition was more severe during the early phase of the study. Exposure to MCP for 180 d resulted in hypertriglyceridemia and marginal decrease in HDL-C levels. MCP failed to modulate PON1 activity in plasma during the early phase of the study (up to 45 d). However, prolonged exposure resulted in significant increase in the plasma PON1 activity. This suggests that manifestation of insulin resistance in rats subjected to chronic exposure to MCP is associated with increase in PON1 activity. Our work provides rationale for studying whether the increase in PON1 activity observed in the present study serves to counter the deleterious effect of long term exposure to organophosphorus insecticides on metabolic homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...